الخوارزمي

العالم المسلم أبو الحسن محمد بن موسى الخوارزمي: ولد هذا العبقري الفذّ في بلدة خوارزم بإقليم تركستان وعاش في بغداد، واضع أسس علم الجبر الحديث وعالج الجبر بأسلوب منطقي علمي وأول من فصل بين علمي الحساب والجبر.

منهج الخوارزمى العلمي: نهج الخوارزمي كغيره من علماء العرب والمسلمين نهجاً علمياً يدل على نبل أخلاقه وعلو همته وسمو مقصده من تأليف كتبه، فقد أوضح في بداية كتابه الجبر والمقابلة الغاية التي من أجلها يؤلف العلماء دون المفاخرة بالنفس أو طلب الشهرة أو المنافسة للغير، أو طلب الأجر على ما يتحملونه من المشاق في كشف أسرار العلم ويقرر قاعدة هامة من قواعد البحث العلمى، وهى اتصال العلماء على مر العصور “فلم يزل العلماء فى الازمنة الخالية والامم الماضية يكتبون الكتب مما يصنفون من صنوف العلم ووجوه الحكمة نظراً لمن بعدهم واحتساباً للاجر بقدر الطاقة ورجاء أن يلحقهم من أجر ذلك وذخره وذكره، ويبقى لهم من لسان الصِدْق ما يصغر في جنبه كثير مما كانوا يتكلفونه من المؤونة ويحملونه على أنفسهم من المشقة في كشف أسرار العلم وغامضه “.

ويصنف الخوارزمى العلماء والباحثين – كلً فى تخصصه – إلى ثلاثة أصناف لا يخرج أى بحث علمى عن أحدهم وهم: “إما رجل سبق إلى ما لم يكن مستخرجاً قبله فورثه من بعده. وإما رجل شرح مما أبقى الاولون ما كان مستغلقاً فأوضح طريقه وسهل مسلكه وقرب مأخذه. وإما رجل وجد فى بعض الكتب خللاً فلم شعثه وأقام أوده وأحسن الظن بصاحبه غير راد عليه ولا مفتخر بذلك من فعل نفسه“. وبهذا يكون الخوارزمى قد وضع فلسفة التأليف العلمى فى عصره وبين ملامح الشخصية العلمية بأنبل الصفات وضرب المثل الاعلى فى حب العلم والمثابرة على البحث العلمى والاجتهاد فى كشف اسرار العلم والتمسك بالامانة العلمية عند النقد أو النقل.

الاحوال السياسية المعاصرة لة: عاش في بغداد، وبرز في زمن خلافة المأمون ابن هارون الرشيد (مدة خلافته من 198- 218 هـ/813- 833م)، ولمع في علم الرياضيات والفلك حتى عينه المأمون رئيساً لبيت الحكمة بعدما رأى نبوغه الفذ وتقدمه فيهما وعهد إليه بجمع الكتب اليونانية وترجمتها، وطلب إليه اختصار كتاب المجسطي، فاختصره وسماه كتاب السند هند، أي الدهر الداهر، كما عهد المأمون إليه برسم خارطة للأرض عمل فيها أكثر من 70 جغرافيا، وقد اشترك في حساب ميلان الشمس في ذلك العهد. وتناول أيضا مسائل في التنجيم من الناحية العملية. أعدالخوارزمي أيضا مجموعة من صور السموات والعالم نزولا على طلب المأمون.

الخوارزمى مؤسس علم الجبر

ومن هذا التعريف يتضح أن القصد منه هو العمليتان الجبريتان التاليتان :

م + س = ب                                    م س = ب

كتاب الجبر كان أول كتبه عن الحل النظامي ’’للمعادلتان الخطية والتربيعية‘‘.

وكذلك تنبّه الخوارزمي للكميات التخيلية، فقد قال: ” واعلم أنك إذا نصفت الأجذار في هذا الباب وضربتها في مثلها فكان ذلك أقل من الدراهم التي مع المال فالمسألة مستحيلة [3]

 وقد علق الدكتور مصطفى مشرّفة ومحمّد مرسي أحمد على ذلك فقالا: ” تنبه الخوارزمي للحالة التي يستحيل فيها إيجاد قيمة حقيقية للمجهول، فقال إن المسألة تكون في هذه الحالة مستحيلة وبقيت معروفة بهذا الاسم بين علماء الرياضيات حتى بدأ العالم السويسري (ليوناردو أويلر (1707 – 1783) فى تعريف الكميات التخيلية بأنها: الكمية التي إذا ضربت بنفسها كان الناتج مقداراً سالباً. والجدير بالذكر أن الكميات التخيلية قادت فى النهاية إلى معرفة علم التحليل المركب الذى يعتبر من أهم العلوم الرياضية فى العصر الحديث.

ثم باب المسائل (المعادلات) الست، ثم باب المسائل المختلفة، وهي تدور حول تكوين معادلات من الدرجة الثانية وكيفية حلها. وهذة المسائل قريبة الشبة جداً بما فى كتب الجبر الحديثه. أما المعادلات التى قسمها الخوارزمى إلى ستة ضروب أو أقسام، فيمكن الاشارة إليها فيما يلى:

  1. الاموال التى تعدل الجذور، ومثالها القول: مال يعدل خمسة أجذاره فجذر المال خمسة، والمال خمسة وعشرون، وهو مثل خمسة أجذاره.
  2. الاموال التى تعدل العدد، ومثالها القول: مال يعدل تسعة فهو المال وجذرة ثلاثة. وكالقول خمسة أموال تعدل ثمانين فالمال الواحد خمس الثمانين وهو ستة عشر.
  3. الجذور التى تعدل عدداً، ومثالها القول: جذر يعدل ثلاثة من العدد، فالجذر ثلاثة والمال الذى يكون منة تسعة.
  4. الاموال و الجذور التى تعدل عدداً، ومثالها القول: مال وعشرة أجذار يعدل تسعة وثلاثين درهماً، ومعناه أى مال إذا زدت عليه مثل عشرة أجذار بلغ ذلك كله تسعة وثلاثين.
  5. الاموال و العدد التى تعدل جذوراً، ومثالها القول: مال وأحد وعشرون من العدد يعدل عشرة أجذاره، ومعناه أى مال إذا زدت عليه واحداً وعشرين درهماً، كان ما اجتمع مثل عشرة أجذار ذلك العدد.
  6. الجذور و العدد التى تعدل الاموال، ومثالها القول: ثلاثة أجذار وأربعة من العدد تعدل مالاً.

وهذة الضروب الستة من المعادلات يعبر عنها باللغة الجبرية الحديثة كما يلى:

  1. م س2              = ب س
  2. م س2              = جـ
  3. ب س              = جـ
  4. م س2 + ب س  = ب س
  5. م س2 + جـ      = ب س
  6. ب س + جـ      = م س2

ثم قدم الخوارزمى حلاً لكل ضرب من هذه الضروب الستة بذكر أمثلة توضيحية مفصلة خالية من أستعمال الرموز، الامر الذى لأمر الذى تطلب منه جهداً كبيراً فى حل مثل هذه المسائل الجبرية. يقول الخوارزمى : “مالان وعشرة أجذار تعدل ثمانية وأربعين درهما, وهو يقدم طريقة الحل على هذا النحو:” ومعناه٬ أى مالين إذا جمعا وزيد عليهما مثل عشرة أجذار أحدهما٬ بلغ ذلك ثمانية وأربعين درهماً. فينبغى أن ترد المالين إلى مـال واحد٬ وقد علمت أن مالاً من مالين نصفهما٬ فاردد كل شئ فى المسألة إلى نصفه٬ فكأنه قال : مال وخمسة أجذار يعدل أربعة وعشرين درهمـاً.

اختراع الرقم صفر:

ينسب اختراع الصفر الذي بسط تمثيل الأرقام، إلى الخوارزمي، الذي لولاه لما تطورت الرياضيات ومن بعدها التكنولوجيا. وإذا كان الخوارزمي قد أخذ الأرقام عن الهنود، ولكنه مهر علم الحساب بطابع علمي لم يتوافر للهنود الذين أخذ عنهم هذه الأرقام، فهو الذي ادخل الصفر إلى الاعداد لتكون الاعداد الطبيعية.

وهو الذي استخدمها للمرة الأولى في العمليات (المسائل) الحسابية، ودل الناس على طريقة استخدامها، ثم دَوّن المسألة الحسابية تدويناً أبرز فيه ترتيب الأعداد في مراتب (خانات أو درجات) معينة، حتى تبرز الأعداد، ويصبح جمع الأرقام بعضها إلى بعض، أو طرحها أو ضربها أو قِسمتها ممكناً سهلاً، ويُعتقد أن هذا العمل قام في ذهن الخوارزمي على إدراك واضح للنظام العُشْريّ، ذلك لأن مراتب الأعداد هي أساس النظام العشري: إن العدد (4444) مثلاً مفروض فيه أنه كلما انتقل الرقم (4) من مرتبة إلى التي تليها يساراً ضُرِب في عشرة، وكذلك كلما انتقل من مرتبة إلى التي تليها يميناً قُسّم على عشرة، كما هو الحال في الرقم (4) في الأعداد التالية : 41111،14111،11411،11141،11114

انتقال الأرقام إلى أوروبا:

وقد نشر” فردريك روزن” كتاب الجبر والمقابلة سنة1831م فى لندن٬ ونشر كارنبسكى ترجمة أخرى مأخوذة من ترجمة الشسترى سنة 1915 من هنـا يتضح أن أعمال الخوارزمى فى علم الرياضيات قد لعبت فى الماضى والحاضر دوراً مهماً فى تقدمه٬ لأنها أحد المصادر الرئيسة التى انتقل خلالها الجبر والأعداد العربية إلى أوربا.. فعلم الجبر من أعظم ما اخترعه العقل البشرى من علوم، لما فيه من دقة وأحكام قياسية عامة.. فالخوارزمى هو الذى وضع قواعده الأساسية وأصوله الابتدائية كما نعرفها اليوم.

شهادة بعالمية الخوارزمى:

وخلاصة القول إن الخوارزمي:


المراجع:

[1] (الخوارزمى كتاب الجبر والمقابلة، تحقيق مصطفى مشرّفة ومحمّد مرسي أحمد، ملحق بكتاب د. ماهر عبد القادر محمد، التراث والحضارة الاسلامية  ص 228)

[2] (نفس المرج السابق ص 229) [3] (نفس المرج السابق ص 233) [4] (نفس المرج السابق ص 270) [5](نفس المرج السابق ص 272) [6] العالم وبناء الامم د. راغب السرجاني ص 530 [7] اكرم عبد الوهاب: 100 عالم غيروا وجه العالم ص 20.

Exit mobile version